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reflections and the average I EI value may be used as 
a criterion to select those matrices which on 
refinement are expected to yield good phases. 
However, Fig. 3 shows a few matrices of high average 
[E I value not giving good starting sets at all. 

Remarkably, the number of unobserved reflections 
does not play a significant role. The table shows very 
good starting sets obtained from matrices containing 
a large number of unobserved reflections. 

The influence of the number of symmetry- 
equivalent reflections is not very clear. Fig. 4 contains 
no evidence of good matrices being found for par- 
ticular values of the ratio between dependent and 
independent reflections only. 

Clearly, the quality of the best matrices produced 
using the new algorithm far exceeds those from earlier 
attempts. For all three structures, large starting sets - 
over 30 reflections - could be generated with very low 
average phase errors (see Table 1). 

Although memory requirements are considerable 
(2-3 Mbyte), the construction algorithm is very fast. 
Using a MicroVAX II, the construction takes 1-3 min 
only. 

It is interesting to note that not until the deter- 
minant was maximized did the phases of the starting 
set bear any relation whatsoever to the true phases. 
This illustrates the validity of the generalized 
maximum determinant rule (Tsoucaris, 1970; Karle, 
1970; Heinerman et al., 1979). 
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Abstract 

The validity of least-squares procedures commonly 
used nowadays for the analysis of single-crystal, X- 
ray and neutron diffraction data is examined. An 
improved methodology that rests on sound statistical 
theory is proposed and turns out to be a fruitful 
way to consider any crystallographic refinement. A 
maximum-likelihood estimation procedure is devel- 
oped for Poisson regression models. Measures of the 
goodness of fit (other than the R factor), generalized 
residuals and diagnostic plots are described. 
Confidence regions and intervals are also discussed. 
A set of measures of the influence of data on the fit 
and the parameter estimates is obtained for Poisson 
statistics. Finally, the effect of under or over disper- 
sion of the data randomness with respect to a true 
Poisson distribution is considered and model- 
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independent estimates of this dispersion are 
discussed. 

~e~, 0, • • • 

• 1, 0 , . . .  

Y, x , . . .  

y , x , . . .  

Y,x,.. .  

General notation and symbols frequently used 

Lower case greek italics denote scalar 
parameters. 
Lower case greek bold denote column- 
vector parameters. 
Upper case italics normally denote real 
random variables. 
Lower case italics normally denote ob- 
served values of real random variables 
(realizations). 
Bold upper case italics normally denote 
column random vectors with correspond- 
ing components Y~, X~, . . . .  
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y , x , . . .  

X, A , . . .  

'X 
X-1 
Y,~,... 

~-o(Y) 

Varo(Y) 

(to(Y) 

Co(Y) 

Varo(Y) 
Rp 

e(n -~) 

o(n -~) 

Pr(A) 

Bold lower case italics normally denote 
observations of random vectors with cor- 
responding components y~, x i , . . . .  
Bold upper case roman letters normally 
denote matrices. 
The transpose of matrix X. 
The inverse of matrix X. 
A hat over a symbol or expression denotes 
a sample estimate of the corresponding 
parameter. 
Also denotes a sample estimate but is used 
only for the minimum )(2 estimate of 13. 
The expectation (population mean) of a 
random variable whose probability distri- 
bution is characterized by the parameter 
0. Whenever the subscript is obvious it is 
omitted. 
The variance of the random variable Y for 
a probability distribution characterized by 
the parameter 0. 
The standard deviation of the random 
variable Y. 
The expectation (population mean) of a 
random vector Y. It is a column vector 
with components the expectations of the 
Y/'S. 
The variance-covariance matrix of Y. 
The set of p-dimensional column vectors. 
A quantity whose behavior is similar to 
that of M~ n ~ when n ~ ~ ,  with M a finite 
constant 
A quantity M,, such that lim,_~o~ M,,/n ~' = 
O. 
The probability of the event A. 

1. Introduction 

From the data (counts with a a priori Poisson-like 
distribution) of a diffraction experiment to the final 
model (the crystallographic structure), there are 
usually several steps such as: information summary 
(data reduction), a set of corrections and a least- 
squares refinement of the parameters of the appropri- 
ate model. These steps may be performed indepen- 
dently or all together within a single refinement 
procedure, as in the case of the Rietveld profile 
refinement method, a very popular method for 
powder diffraction analysis, originally developed by 
Rietveld (1969). 

In this method, the step-scan diffraction pattern is 
directly fitted, point by point, to a model pattern in 
the form of a background contribution and a set of 
diffraction peaks. The latter contribution is derived 
from a set of structural (positional and displacement), 
textural and instrumental parameters. Assuming a 
known functional shape for each of the p Bragg peaks 
in the pattern and following Rietveld's notation, an 
observed step count Yi for a counting time T at an 

angle ti may be considered as the realization of a 
Poisson-distributed random variable Yi (randomness 
by counting statistics errors) whose mean IF(Y~)= n~ 
can be written as 

P 
r/,=[E(Y~)= Y" T. Ikfk(t,; Ok)+ T.B(t~),  (1) 

k=l  

where B(t) is a smooth function of t representing the 
background per unit of time and fk(t; Ok) models the 
shape of the kth reflection. The intensity Ik and the 
parameters Ok depend usually on a set of structural 
parameters, say 13, which are of direct interest. 

The problem is thus to find a set of parameters 
explaining as well as possible the data through the 
postulated model (1). This is usually done by means 
of a weighted least-squares procedure. However, 
when studies are made for the validity of the results 
(e.g. Hill & Madsen, 1984) a number of problems 
appears such as unexpectedly large values of good- 
ness-of-fit statistics in some data sets, unrealistic esti- 
mates of standard deviations in the parameters etc. 
This leads to the practical conclusion that improving 
the data statistics further and further (larger counting 
times) may lead to 'worse' results, which, abruptly 
said, is apparently in contradiction with classical 
statistical theory. 

The present work is devoted to a complete dis- 
cussion of existing statistical methods used for the 
analysis of powder or single-crystal diffraction data 
(fitting of rocking curves) and concerns a class 
of statistical regression models that allow the 
experimentalist to extract the best possible informa- 
tion from his experiment. 

Estimation proceeds by defining a measure of dis- 
crepancy between the data and a corresponding set 
of fitted values generated by the model. In what 
follows, the maximum-likelihood principle is used to 
obtain estimates of the parameters in a regression 
model when the experimental errors are assumed to 
follow a Poisson or a Poisson-like distribution. A 
crucial point is concerned with the actual maximiz- 
ation of the likelihood function, which in many cases 
has to be performed using numerical methods, often 
of iterative character. A common way for the calcula- 
tion of the maximum-likelihood estimates is to use 
the method of  scoring (to be seen later) due to Fisher 
(1922). It is shown, in our context, that the method 
of scoring can be performed as an iterative reweighted 
least-squares procedure which differs from frequently 
used standard least-squares fitting algorithms. 

Minimization with respect to [3 of the following 
weighted sum of squares 

X 2= ~ [y,-~7,([3)]2/~,([3) (2) 
i=1 

leads to a weighted least-squares estimate of the 
unknown parameters. In Rietveld's refinement 
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2 method method (known also as minimum modified X,, 
in the statistical literature), the estimator 13 of the 
unknown parameter column vector 13 is the one that 
minimizes 

2 ~ [yi ~7,(13)]2/Y, (3) X m o d  ~--- 
i = 1  

instead of (2). When the counts are large and the 
structural model is 'smooth' enough [i.e. when "q(13) 
as a function of 13 is at least second-order differ- 
entiable], it can be proved that the least-squares and 
the modified minimum X a estimates have similar 
behavior. 

When T is large, then E(Y~) is large for all i and 
the distribution of Y~ may be approximated by a 
Gaussian random variable whose mean and variance 
is ~1~. Further assumption that the measured profiles 
y~ are realizations of stochastically independent 
Y~'s leads to a likelihood function given by (see e.g. 
Rao, 1973) 

1 
1('[ r/71/2 exp [ -½(y , -  r/,)2/r/,]. (4) 

(2rr)"//i=a 

In using as a measure of discrepancy the deviance 
- [g(al, y) - ¢'(y, y)] where g(y, y) is the maximum 
log-likelihood achievable for an exact fit in which 
fitted values equal data, one obtains for the previous 
Gaussian approximation [assuming also that 
In (rt,/y~) are negligible], 

-[{(~,Y)-{(Y,Y)]~-- ~ ( Y i - - ' r l i ) 2 / r h  • 
i = 1  

Hence, minimization of the deviance with respect to 
the parameter set 13 is approximately equivalent 
to weighted least-squares refinement. Generally, 
because ~¢(y, y) does not depend on the parameters, 
minimizing the deviance or maximizing the log-likeli- 
hood C(~I, y) are equivalent problems. Therefore, if 
the approximation that the errors of the observations 
are independent and normally distributed is reason- 
able, a properly weighted least-squares analysis leads 
to the same estimates of the parameters as R. A. 
Fisher's maximum-likelihood method (Fisher, 1922). 

When the minimum number of counts in any profile 
point is large (large sample sizes), an ideal situation, 
the minimum X 2 method (Rietveld's least-squares 
algorithm) will produce estimates of the fit parameters 
with equivalent properties (asymptotic unbiasedness, 
first-order efficiency etc.) to those of the estimates 
obtained by applying the maximum-likelihood 
method. However, we demonstrate in this paper that 
this is no longer true for moderate to small sample 
sizes and the maximum-likelihood method is then the 
more accurate of the two. 

As already stated above, a habitual source of con- 
cern to users of the Rietveld refinement method 
(Albinati & Willis, 1982) is that estimated standard 

deviations of the parameters (e.s.d. for short) are 
often unreliable, with a goodness-of-fit index unac- 
ceptably large (overdispersion). Our framework 
includes a class of regression families that allow the 
analyst to model this overdispersion and to include 
it as part of the fit. It also provides some informative 
diagnostic measures for the fit. These measures turn 
out to be useful in identifying observations that are 
not well explained by the model, as well as those 
dominating some important aspect of the fit. Compu- 
tational issues and applications of our method in the 
analysis of real and simulated data are presented. 

2. M a x i m u m  l ike l ihood  and least  squares  

This section emphasizes the basic statistical notions 
that will be used later. The theory developed here is 
not original to this article. Readers of the literature 
on least-squares refinement and maximum-likelihood 
estimation will find most of the ideas familiar, though 
stated from a different point of view. 

In the refinement of a crystal structure, one assumes 
a structural model with variable parameters, the 
values of which are chosen so as to achieve the 'best' 
agreement between the calculated and the observed 
data. More generally, the aim in model fitting is to 
replace the observed data set y with a set of fitted 
values 33 derived from a model, these fitted values 
being as 'close' as possible to the data values. To do 
so requires some measure of discrepancy to be defined 
between the components Yi of y and the )3i's, and this 
definition requires certain assumptions to be made 
about the variation in the yi's that is not accounted 
for by the model. Standard weighted least-squares 
refinement chooses S 2= ~.i wi( Yi- 33~) 2 as the measure 
of discrepancy. 

This formula has two implications: firstly, the 
simple summation of the individual terms wi ( yi - )3~)2, 
each depending on only one observation, implies that 
the measurements are independent in some sense; 
secondly, the use of the weight factors, w~, implies 
that the observations may be of varying precision 
which may or may not depend on the components of 
33. If we model the unaccounted variation in statistical 
terms, the first property becomes stochastic indepen- 
dence, and the second property is interpreted by 
requiring that the variance of the distribution of devi- 
ations be proportional to the inverse of the weights. 
Moreover, the use of S 2 implies the normal (or 
Gaussian) frequency distribution for each component 
ei = Y~- r/i of the residual variation e, in which the 
frequency of Y~ at Yi given ni is proportional to 

exp [-w~(yi- r/~)2], (5) 

where 1/2wi is the variance of the distribution. 
We can look at (5) in two ways. If we regard it as 

a function ofy~ for fixed r/i, (5) specifies the probabil- 
ity distribution of the observations. Alternatively, for 
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a given observation Yi we may consider (5) as a 
function of ni giving the relative plausibility of 
different values of r/~ for the particular observed value 
y~ of Y~. In the latter form it becomes the likelihood 
function whose maximization with respect to r/i leads 
to the maximum-likelihood estimation of r/~. Thus, if 
the distribution is normal, the methods of maximum 
likelihood and least squares give identical estimates. 
However, for non-normal distributions, sums of 
squares will no longer be appropriate measures of 
goodness-of-fit and least-squares estimation may be 
inappropriate. 

The method to be developed in this paper con- 
siders both problems (least squares and maximum 
likelihood) but is particularly concerned with the 
maximum-likelihood principle. This will be clear 
from the subsequent discussion. Meanwhile, it is 
worth clarifying the various aspects of maximum- 
likelihood theory and its advantages over least 
squares. 

Although the method of maximum likelihood 
(hereafter abbreviated MML) dates back to Bernoulli 
(1861), it is generally agreed that Fisher (1922) redis- 
covered it and set the stage for its general acceptance 
in the statistical world. Efron (1982) provides an 
excellent discussion on the maximum-likelihood 
principle. MML, as used in practice, is a theory for 
making specific point and interval estimates for 
unknown parameters, while in fact it is a data sum- 
marization process. More precisely, the maximum- 
likelihood method can be described as follows: given 
a family ff  of probability densities for Y characterized 
by a population parameter 0 in a parameter set O 
(i.e. our prior belief on the model that has generated 
the observed data), 

~ = { f o ,  0~ O}, 

we observe the data y for Y. Let 0 be the value of 0, 
assumed to exist, which maximizes the probability 
density y --> fo(Y). The maximum-likelihood summary 
of the data, abbreviated MLS, is the density function 
(model) corresponding to 0 = 0, 

A 

MLS: f = f ~ .  

There are two important points here: 
(a) The parameter '0 '  as used here is only a name, 

and plays no role in the summarization process. Any 
other way of  naming the members of ~ results in the 
same MLS f, given the same data y. 

(b) The MLS is not a number or a vector, it is a 
probability distribution. We are summarizing a data 
set by a probability distribution. 

Next, suppose that 3'(f) is a parameter (function 
of the unknown probability mechanism) we wish to 
estimate. The maximum-likelihood estimate, MLE for 
short, is the corresponding function of f, 

MLE: ~ =  ~/(f). (6) 

A 

Thus, once we have calculated the MLS f, we have 
available the MLE for every possible parameter y ( f )  
while this is not the case for least-squares estimation: 
take, for example, the estimation of e -x when observ- 
ing counts generated by a Poisson random variable 
of parameter A. The least-squares estimate of e -x is 
easily shown to be the relative frequency of zero 
counts observed within the sample, while the 
maximum-likelihood estimate is e -x where ~ denotes 
the sample mean. 

This automatic way in which the maximum-likeli- 
hood method produces estimates for even very com- 
plicated parameters reflects well the distinction 
between MLE and standard least-squares estimates 
and justifies MML's popularity. Of course, for the 
same reason, MLE can be non-optimal if the 
experimentalist has one specific estimation problem 
in mind (the reader may refer again to the Poisson 
example just cited above). 

Finally note that the extended class of models 
presented hereafter includes as an important example 
the class of generalized linear models (GLIM) intro- 
duced by Nelder & Wedderburn (1972) and which 
are typically used to analyze linear exponential family 
regression models in biomedical sciences. 

3. Maximum-likelihood estimation for Poisson 
regression models 

In this section, we introduce a method of regression 
analysis for Poisson distributed data by fitting non- 
linear regression models to the Poisson means using 
maximum-likelihood theory. Specifically, we con- 
sider the regression situation, where we observe 
independent Poisson variates Y1, Y 2 , . . . ,  Y, with 
density functions proportional to 

Pr( ~ = y,) = f (y, ; Oi) : (y,!)-i  exp {[y,O,-  b( O,)]}, 

i = l , . . . , n ,  (7) 

with 0i=ln[r/i(13)], where ~7i(13) denotes the ith 
Poisson mean, n is the sample size and 13 is the 
p-dimensional parameter vector characterizing the 
theoretical pattern. In order to obtain the MLE for 
the unknown parameter vector 13 we must maximize 
with respect to 13 either the likelihood function or, 
which is more convenient, the logarithm g[~l(13), y] 
of the likelihood function, given by 

E[ 'q (~) ,y]=  ~ { y i l n [ r l i ( ~ ) ] - r h ( ~ )  }. (8) 
i = l  

The maximum-likelihood equations for 13 based on 
(8) are quite simple. The score vector is defined by 

a ~ e [ ~ l ( ~ , ) ,  y ] / a f ,  = ' [ a e / a l 3 , ,  . . . , a g / a / 3 p ] ,  (9) 

where the superscript t denotes transposition. 
Let X(13) denote the n x p matrix 001013, which 

we call the local design matrix. This design matrix 
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depends on the unknown parameters in a nonlinear 
fashion. We will assume that X(13) has full rank p for 
all possible values of 13 (i.e. the model is identifiable). 
The maximum-likelihood estimate 13 of 13 is obtained 
by solving the score vector for zero. Hence, the likeli- 
hood equations take the form 

,=, 0/3, ~i~13) 1 

= {'x(13)v-'(13)[y-n(13)]b 
=0,  j = l , . . . , p  (10) 

or, in matrix notation, 

'x(13) . u = 0 ,  

where u is the n-dimensional vector aC/co'q with com- 
ponents given by lye/r/i(13)- 1]. 

Here, V(13) denotes the n x n variance-covariance 
matrix of the observed data random vector Y, which 
is diagonal by the independence assumption with 
diagonal entries the weights r/~. 

Since the ML equations are generally nonlinear 
with respect to the unknown parameters, Fisher's 
method of scores (see e.g. Rao, 1973) is used to 
develop an algorithm to find a root 13 of (10). The 
algorithm is defined as a Newton-Raphson-type 
algorithm, where the matrix of second derivatives of 
the log-likelihood function / is replaced by a suitable 
approximation. 

More precisely, the standard Newton-Raphson 
method for the iterative solution of (10) calls for 
evaluating u, X(13) and the second derivatives of C 
for an initial value of 13 and for solving the linear 
equations 

(-CO2~,e/CO13'CO13') (13" - 13) = 'X(13)u (11) 

for an updated estimate 13". This procedure is 
repeated until convergence. Equation (11) is derived 
from the first two terms of a Taylor-series expansion 
for O~e/013. 

Note that 

( -co2t~ 'x(13) x(13). 02~7i 

.=. cO,. cO13'cO13 a-47T4~ 

The matr ix  -cO=C/cO13'a13, denoted by J(13), is called 
the observed information for 13 while ~(~)= 
-02g/a~l'a~l is the observed information for "11. By 
standard arguments one has 

E(0g/cor/i) = 0, i = l , . . . , n  

and it follows that 

J~(n) = IF[~(n) ] = E( - 02 ~a/cO n ,cOn) = Var [u(n) ] 

which is positive-definite. 
Fisher's scoring method is defined as Newton- 

Raphson iteration with replacement of the Hessian 
~(13) by its expectation 3r(13) (at the current param- 

eter values 13), whereas another method, called the 
linearization method, is defined by replacing the 
Hessian by 'X(13))(~I)X(13). With any of these 
approximations (11) becomes 

[tX(13). Aa.  X(13)](13" - 13) = 'X(13)u, (12) 

where Aa is either 3~(~1) or ~¢(II). 
Rather than handle the numerical solution of (12) 

directly, note that they' have the form of normal 
equations for a weighted least-squares regression: 13" 
solves the minimization of 

t[A~au+ X(13)(13" - 13)]A~ 

× [ A~'u + X(13)(13" - 13) ], 
that is, it results from regressing A~lu+X(13)13 onto 
the columns of X(13) using weight matrix Aa. It is 
this treatment of the scoring method via least squares 
that we used for the maximum-likelihood method. 
To stabilize the numerical method, we do not accept 
the current 13", but rather use it to define a direction 
in which the likelihood increases. Thus, we used the 
iteration 

13(r+1) = 13(r)..~_ Olr[tX(13(r)). AI3(,) " X(13(r))]--I 

X 'X(13(r))Ur, (13) 

with the step length ar > 0 chosen by a linear search 
algorithm [Goldstein's (1965) test]. Of course we are 
not able to show in general that the iterative procedure 
will converge or, if it converges, that the obtained 
maximum is unique. This depends on the choice of 
the initial estimates. 

Let us give now a final remark about the maximum- 
likelihood algorithm and its analogy with a weighted 
least-squares regression. In the Poisson regression 
model, the weights are determined by the fit, which 
should not be confused with a classical weighted 
least-squares problem where the weights determine the 
fit. For those readers who remain doubtful of this 
subtle difference in interpretation of the weights, we 
suggest moving the last point in Fig. 1 further and 
further to the right and observing the consequences. 

We end this section by discussing a convergence 
criterion for the ML algorithm, since in the majority 
of refinement programs there exist only stopping 
criteria for convergence. Indeed, a vital part of any 
nonlinear maximum-likelihood algorithm is the test 
for convergence to the maximum solution. Such a 
test, or convergence criterion, consists of an indicator 
calculated at each iteration and a tolerance level such 
that convergence is declared when the indicator falls 
below the tolerance level. Many authors (see e.g. 
Bard, 1974; Draper & Smith, 1966; Ralston & 
Jennrich, 1978) writing about nonlinear least-squares 
refinement recommend relative change in the sum-of- 
squares convergence criteria, but they also state that 
there is no known criterion that is absolutely satisfac- 
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tory. Bates & Watts (1981) propose an orthogonality 
convergence criterion for classical nonlinear least- 
squares models. All but the last of these are more 
correctly described as termination criteria, since they 
merely indicate whether further iterations might be 
useful; they are not convergence criteria since they 
do not necessarily indicate whether a local maximum 
has been reached. On the other hand, orthogonality 
is an absolute indicator of convergence. Motivated 
by the Bates & Watts criterion, a similar convergence 
criterion has been developed in our maximum-likeli- 
hood theory for Poisson data. 

Since the maximum-likelihood-estimation proce- 
dure described above is computationally equivalent 
to a weighted least-squares refinement, it follows also 
from (10) that a solution to the likelihood equations 
corresponds to a point at which the vector of 
'residuals' y-11(13) is orthogonal to the vector space 
spanned by the columns of X(13), in the geometry 
determined by the variance-covariance matrix of Y. 
An important consequence of this orthogonality is 
that the residual vector has zero projection onto the 
tangent plane spanned by the columns of X(13), and 
so we used the length of this projection as an indicator 
for convergence and we developed a meaningful 

o.°" 3 

• ° . ° "  • 

x 
(a) 

,00 H / . . .  l ® 

. A  
o ' ,'0 ' 2'° X 

(b) 

Fig. 1. Scatter plots of a simulated Poisson data set and two fitted 
regression line models, one by weighted least-squares refinement 
and the other by MLE; 1: true model, 2: WLS, 3: ML. In (b) 
the last point (circled) was not included in the fit. 

tolerance level based on statistical considerations (a 
relative offset of the tangent plane confidence disc 
for the unknown parameters). Further details are 
discussed in Antoniadis & Berruyer (1990). 

4.  L a r g e - s a m p l e  i n f e r e n c e  and m o d e l  a d e q u a c y  

4.1. Asymptotic theory and tests 

This section addresses potential mis-specification 
of the nonlinear predictor ~1(13) in generalized Poisson 
nonlinear regression models. Our approach is based 
on results from large-sample likelihood theory. We 
provide a brief review of the necessary results from 
this theory while setting out notation. The reader is 
referred to Cox & Hinkley (1974) for a more complete 
discussion. 

It is helpful to distinguish two types of asymptotic 
situations: that where n + oo and that where each Yi 
becomes approximately normal (for the latter case 
we will refer to an index T -  co). In the context of 
diffraction-pattern analysis, the n-asymptotics are 
equivalent to a small profile step width, while T- 
asymptotics are related to large-step counting times. 
We will focus first on the commonly occurring situ- 
ation in which n is large, regardless of the size of T. 

Central to asymptotic likelihood arguments is the 
score vector defined by (9). Under some mild require- 
ments, the central limit theorem applies and it can 
be shown that OE['q(B),y]/O~ is asymptotically 
Gaussian with mean zero and covariance matrix 
~¢([3). Standard limit calculations and Taylor 
expansions can then be employed to show that the 
MLE [3 is asymptotically multivariate normal with 
mean [3 and covariance matrix ~¢([3) -1. 

Tests of hypotheses about [3 and interval estimation 
are based on this result. For example, as we shall see, 
confidence regions can be specified using the fact that 

2 has asymptotically a Xp distribution with p degrees 
of freedom. All the above results can be modified 
by replacing the theoretical information matrix # (13) 
with #(13) or even the observed one ~(f i )  while retain- 
ing the X 2 result. 

A second class of likelihood statistics is that based 
on the likelihood ratio and its asymptotic distribution, 
which has the advantage of yielding inferences that 
are independent (to some extent) of the arbitrary 
parametrization used. We shall be primarily con- 
cerned with that formed from the logarithm of a ratio 
of likelihoods, called the deviance. 

Given n profile points we could fit models to them 
containing up to n parameters. The simplest model, 
the null model, has one parameter representing a 
common mean r/ for all the yi's; it corresponds to a 
diffraction pattern with only a fiat background contri- 
bution. At the other extreme the full model has n 
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parameters, one per observation, and the n~'s derived 
from it match the data exactly. In practice the null 
model is too simple and the full model is uninforma- 
tive. However, the full model provides us with a 
baseline for measuring the discrepancy for an inter- 
mediate model with p parameters (0 < p < n). More 
precisely, the maximum log-likelihood achievable in 
a full model with n parameters is g(y,y).  The dis- 
crepancy of a fit is proportional to twice the difference 
between the maximum log-likelihood achievable and 
that achieved by the model under investigation. In 
the Poisson regression case, the discrepancy can be 
written 

D(y, 2{e(y, y) - 

= 2 [y, In (y,/(h) - (Y,-  9, , 
i 1 

known as the deviance for the current model, and 
called sometimes the G 2 statistic (see Bishop, Fien- 
berg & Holland, 1975). By standard asymptotic argu- 
ments one can show that the deviance for a correct 
Poisson model without systematic error is approxi- 
mately distributed as a X 2 with n - p  degrees of free- 
dom, where p is the dimension of the fitted model. 
Thus, the deviance can and will be used for goodness- 
of-fit purposes. 

In profile-fitting methods, frequently one wishes to 
choose between two models which differ essentially 
in the number of parameters used to describe the 
pattern. A model with fewer restraints, that is with a 
greater number of parameters, can usually be made 
to fit the data better than can a more restrained model 
(when the parameters in a model are a subset of these 
in another model we say that the two models are 
nested); the crystallographer is thus often tempted to 
add more and more parameters to obtain better fits. 
It is therefore important to obtain a convenient 
method which allows one to decide whether the 
increase in the number of parameters leads to a sig- 
nificant improvement in the agreement between the 
observed and calculated patterns. This can be done 
by hypothesis-testing procedures or model-selection 
criteria. 

The deviance can be used when comparing a series 
of nested models. For example, let H~ : 0 ~ 12 i (i = 1, 2) 
be two nested hypotheses O1 ~_ 02 of dimension p, 
and P2 respectively. Let D~ (i = 1, 2) be the deviance 
for model Hi ( i=  1, 2). By a suitable large-sample 
argument we have that, asymptotically, under/42, D1 
and D 2 - D 1  have independent X 2 distributions with 
degrees of freedom n - p 1  and p~-p2,  respectively, 
and are asymptotically independent of 0. An approxi- 
mate test for H2 under H~ may then be based on the 
Fisher-Snedecor distribution of the F statistic 

(D2-  D~)/(p~-p2) 
F -  

D1 / (n -p l )  

Tests of this form have already been proposed for 
other types of distributions (see e.g. Mardia, 1972, 
p. 154; Jensen, 1981) and have been applied in crystal- 
lography by Hamilton (1965). 

Another viable alternative to hypothesis testing is 
the application of model-selection criteria involving 
the deviance. Model-selection criteria take account 
simultaneously of both the goodness-of-fit (likeli- 
hood) of a model and the number of parameters used 
to achieve that fit. The criteria we consider can be 
represented as special cases of criteria such as those 
introduced by Akaike (1974a, b) or Schwarz (1978). 
They take the form of a penalized likelihood function, 
that is, the deviance of the current model plus a 
penalty term, which increases with the number of 
parameters. All these criteria take the form 

Qk = Dk + a(n)m(k) ,  (14) 

where Dk is the deviance for the kth model, a(n) 
represents the cost ot ~ fitting an additional parameter 
and re(k) is the number of independent parameters 
in the nonlinear predictor ~7. Akaike's information 
criterion (AIC) is of the form (14) with c~(n)= 2 for 
all n, while in Schwarz's criterion one has a ( n ) =  
In (n). Since, for n greater than 8, In (n) exceeds 2, 
Schwarz's criterion favors models with fewer param- 
eters than does Akaike's. Application of both these 
criteria to some real and simulated examples are given 
at the end of this paper. 

4.2. Measuring the overall goodness of fit 

Fitting a model to data may be regarded as a way 
of replacing a set of data values y by a set of fitted 
values ,¢ derived from a model involving in general 
a relatively small number of parameters. Measures of 
discrepancy (or goodness of fit) may be formed in 
various ways, but we shall be primarily concerned 
with the ones usually used in crystallography as well 
as those based on the deviance. 

In pattern decomposition methods on diffraction 
data, assuming that the relevant error distribution is 
Poisson, and after the usual fitting is completed, 
model adequacy is generally examined via the Pear- 
son X 2 statistic, which takes the form 

X 2= ~ (y,-~,)2/V~,(Y,) ,  (15) 
i = 1  

where V,~,(Yi) = ~i is the estimated variance for the 
ith observation. If the model is correct, then the above 
statistic is approximately distributed like a X 2 distri- 
bution with n - p  degrees of freedom. If the value of 
this Pearson statistic departs significantly from its 
expectation n - p ,  then it can be concluded that either 
the Poisson assumption is inappropriate, or that the 
theoretical model for diffraction peaks is incomplete 
or incorrect. In any case, inference drawn from badly 
fitted models should be viewed with caution. 
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While in the field of profile fitting X 2 is widely 
accepted as a reasonable measure of goodness of fit, 
other statistics for describing the goodness of fit, not 
commonly used in the statistical literature, are still 
very popular  among crystallographers. Thus, the 
statistical behavior of, for example, the conventional 
agreement factors Rp and Rwp a r e  (see e.g. Young, 
Prince & Sparks, 1982) worth a closer look: 

]yi(obs.)-(1/c)yi(calc.) l  
i=l  Rp -- 

yi(obs.) 
i=l  

Rwp= i=l ~ wi[yi(obs.)] 2 
i=1 

where wi is the ith weight and c is the scale factor. 
In these expressions the data Yi need not be profile 
points in a powder diffraction experiment, but can 
be any experimentally accessible quantities. In our 
opinion these statistics are poor measures of goodness 
of fit, especially in the case of profile fitting. To 
support this statement, consider for example a diffrac- 
tion pattern without any Bragg reflexion and with a 
flat background, that is, suppose that the observed 
data yi are independent observations from the same 
Poisson distribution with parameter /z. Under the 
Poisson assumption, the statistic Rwp becomes 

" n 11/2 
Rwp = i~l [Yi(°bs')- fi]2/ fi" 

~. [Yi(°bs')]2/ fi 

where fi is any consistent estimator of the variance 
p. of Yi. It is not difficult to see that Rwp behaves like 
1/(1 + ~)  and therefore can be made arbitrarily small 
when p. is large. The agreement factors are more 
appropriate when they were used as building blocks 
for the ~ test, as suggested by Hamilton (1964), but 
then it turns out that the likelihood ratio tests of the 
previous section are more powerful. 

When modeling using likelihood principles, the 
deviance is a more adequate statistic as a measure of 
the overall goodness of fit. The Pearson statistic (15) 
is often much more nearly X 2 than is that of the 
deviance (e.g. see Larntz, 1978) but we point out that 
the statistic having a more nearly X 2 distribution is 
not directly connected to being the better measure of 
overall lack of fit. This seems to be an obvious issue 
that it is easy to overlook. We feel that what is presen- 
ted during the analysis of simulated examples makes 
a strong case for the superiority of the deviance as 
such a measure, once the deviance is corrected in 
order that its probability distribution is closer to a X 2 

one. More precisely, for a linear model with Gaussian 
errors, it is known that the deviance D ( y , ~ )  has 
exactly a X 2 distribution with (n - p )  degrees of free- 
dom when the postulated theoretical model with p 
parameters is correct. In the Poisson case this result 
holds only asymptotically and only for very large n 
and T. Definition of a modified deviance by 

D*(y, Cq) = c-' D(y, ~q), 

where c=~_(D)/(n-p),  allows ~:(D*) to be better 
approximated by ( n - p )  than is E(D); this implies a 
better approximation of the distribution of D* by the 

2 X,,-p distribution. For Poisson counting statistics we 
have (e.g. see Antoniadis & Berruyer, 1990), if terms 
up to the order n -3/2 and r/~ -2 are ignored: 

IE[D(y, C l ) ] = n - p - e p + l / 6 ~  1 ,  (16) 
i=l  T~i 

where ep is a correction term, usually of order n -1, 
depending on the model. 

4.3. Generalized residuals and diagnostic plots 

Plots of residuals and of functions of residuals are 
particularly useful for identifying patterns in the data 
that may suggest overdispersion or bias due to mis- 
specifications of one or more components in the 
assessed model. Diagnostic measures are also invalu- 
able aids for a thorough detection of influential data 
points. For linear and nonlinear Gaussian models, 
these procedures are well documented in books such 
as those by Belsley, Kuh & Welsh (1980) and Cook 
& Weisberg (1982). In this section we consider their 
extension to the Poisson nonlinear regression case 
and we discuss their use in identifying individual 
poorly fitting observations. 

Most of the asymptotic results pertaining to 
individual case diagnostics require T to be large. In 
particular, this is the case for the distribution of 
residual deviance and of residuals as defined sub- 
sequently. The aim is to consider residuals that are 
approximately normally distributed. We will consider 
first some general recipes for calculating the residuals 
R(yi, r/i), treating the r/i as known and turn sub- 
sequently to the effect of replacing r/i by the fitted 
values ~i. When treating the means rti as known, but 
more or less arbitrary, we will drop the subscripts. 

For Poisson random variables the major possi- 
bilities are the following: 

(a) linear or 'Pearson'  residuals, 

RL( Y, T1)=[ Y-[F,7( Y)]/o'~( Y)=(  Y - ~ ) / ' q  '/2, 

where [E n and o" 7 denote the mean and standard 
deviation of a scalar Poisson random variable with 
parameter ~/; 

(b) transformed linear residuals, 

R,( Y, ~l )= {t( Y) -E~[ t (  Y) ]}/cr,7[t( Y) ], 
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where 
t(y) = 

(c) 

Ro( 

where 
of r/. 

the transformation t(. ) is either t(y)= y2/3 or 
(y + 3/8)1/2; and 
deviance residuals, 

Y, r/) = sign ( ~ -  r/){2[E(Y, ~ ) _  ~e(y, 7/)]}w2, 

distance are respectively given by the following 
expressions: 

A 

hi 
Ci=p(1-C')ni RL(yi, ~,)2 (19) 

is the maximum-likelihood estimator (MLE) and 

The two cases in (b) correspond to the choice of 
t(.  ) to make the T-asymptotic skewness of t(Y) zero 
in the hope of achieving asymptotic normality, and 
alternatively, the choice of t ( . )  to make the T- 
asymptotic variance of t(Y) constant and equal to 
1/4. The residuals based on the former choice are 
called Anscombe residuals, while the second choice 
defines the so-called variance-stabilizing residuals; see 
Efron (1982) for a fuller discussion. 

Once the maximum-likelihood estimates ~i of the 
responses r/i are fitted, the above residuals, standard- 
ized to have unit asymptotic variance, are given by 

/~(Y, ~,) = R(Y, ~,)/(1-h,) w2, (17) 

where hi is the ith diagonal element of the so-called 
hat matrix H defined by 

H =  ~(~) ' /2X(13) [ 'X (~  ) . A~. X ( f i ) ] - '  

(18) 

and R is Rc or R, or Ro. 
All the diagnostics proposed in this section are 

functions of hi and R(yi, ~i). The hi belong to the 
interval [0, 1] and are essentially measures of case 
leverage. Large values of hi are useful in detecting 
potentially influential points for the fit. Informative 
displays of the above residuals include plots of hi or 
R(y,  ~) versus the index i. Such plots are particularly 
valuable when trying to decide whether an unaccep- 
tably large deviance or X 2 is due to a small number 
of outlying observations (due to a local mis- 
specification in the model) or to a more general lack 
of fit or to overdispersion. In either case, large 
individual components indicate observations poorly 
accounted for by the model. 

The above quantities, however, cannot adequately 
measure the effect on the many components of the 
fitted model. A common technique to assess influence 
of individual observations on the estimation of the 
unknown parameters or their standard deviation is 
by case deletion. In fact, many of the influence 
measures of linear regression are based on the 

m A 

differences 13(o-13, where 13(i) denotes the least- 
squares estimate of 13 after deletion of the ith case 
from the data. Two such influence measures are 
Cook's distance ( Ci) and the likelihood distance ( LDi) 
measures. Using a local asymptotically linear 
approximation of the Poisson nonlinear model by a 
linear model (see Antoniadis & Berruyer, 1990), an 
approximation to Cook's distance and likelihood 

LD,=nln{[p / (n -p)]C,+l} .  (20) 

These measures will be used in the analysis of some 
realistic simulated examples provided later. 

4.4. Confidence regions and confidence intervals 

In practice, the estimated values of the parameter 
vector 13 will not be equal to the true values because 
of random errors in the data. A problem that is often 
overlooked in studies employing nonlinear least- 
squares techniques for parameter estimation is 
confidence-region estimation. More precisely, since 
13 is a random vector, it may be possible to indicate 
with some specific confidence level ( 1 -  a)  in what 
region CR~ (Y) about 13 we might reasonably expect 
13 to be. Such regions are known as 1 0 0 ( I - a ) %  
confidence regions. The present section addresses the 
problem and presents the available mathematical 
techniques for the evaluation of such confidence 
regions and intervals. 

Mathematically, a joint confidence region for all 
the parameters is defined by the image of a function 

CR,, "Y~ a region in R p 

that satisfies Pr[13 ~ CR,~(Y)] -  1 - a, that is which 
covers the true value of the unknown parameter with 
a probability at least 1 -  a. 

Several methods for finding confidence regions 
exist and they are all equivalent in the very large 
sample case. Methods that, for all functions ~1(13) and 
confidence levels 1 - c~, are statistically guaranteed to 
contain the true value 13" of 13 100(1- a)% of the 
time are called exact; all other methods are called 
approximate. 

The method (linearization method) analyzed in this 
section is exact for Gaussian linear models. For 
Poisson nonlinear models it is only approximate but 
has the advantage that the resulting confidence 
regions and intervals are simple and inexpensive to 
compute and that it produces bounded convex 
confidence regions. For a description of exact 
methods such as the lack-of-fit method for example, 
see Antoniadis & Berruyer (1990). 

Linearization methods assume that ~1(13) can be 
adequately approximated by an affine or linear func- 
tion at the vicinity of the least-squares solution ~!(~). 
Under such an assumption, the linear least-squares 
confidence region for the true parameter vector 13" 
consists of those values of 13 for which: 

'(13- fi)A(13- fi) < c~, (21) 
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where the matrix A is either the observed information 
matrix J ( ~ )  for 13 (see § 3.1) or Fisher's information 
matrix 5~(13) and where c~ is such that 

Pr(x 2 - c~) = 1 - a. 

An alternate, though misguided, approach to 
construction of confidence regions is to consider 
the components /3j one at a time. This approach 
i~nores the covariance structure of the p variables 
/3j, j = 1 , . . . ,  p and leads to the intervals: 

A A A A A A 

/3, e [ / 3 , -  cr( /3,)z~, /3,  + ~( /3 , )z~]  

where z, is the 1 0 0 ( l - a )  percentile point of a 
standard normal variate and ~(/3,) is the square root 
of the ith diagonal entry of the matrix 5(~) .  
Although, prior to sampling, the ith interval above 
has (approximately) probability 1 - a of covering/3* 

d , 

we do not know what to assert, in general, about the 
probability of all intervals containing their respective 
/3*'s. This probability is not 1 - a  (see Donaldson & 
Schnabel, 1987). 

If we adopt the attitude that all of the separate 
confidence statements should hold simultaneously 
with a specified high probability 1 - a then we should 
consider simultaneous confidence intervals. These are 
defined as shadows of the p-dimensional confidence 
ellipsoid for 13. These shadows may be obtained by 
projecting the p-dimensional ellipsoid on each co- 
ordinate axis (see Fig. 2). 

For p > 3, we cannot graph the joint confidence 
region for 13. However, it is often informative to 
investigate simultaneous confidence regions for the 
components of 13 in pairs, even if they share the same 
weaknesses as the individual confidence intervals. In 
matrix notation, if we set 

so that 

L :[gi  6] 
( p x 2 )  

r'.i_ 'L13 = L%.113 = ' 

where g, denotes the ith p-dimensional basis vector, 

iii  
i 

i 
| 

Fig. 2. Two confidence ellipses yielding the same simultaneous 
individual intervals (and hence the same rectangles) for the 
parameters/3i and/3j. 

then 'L13 lies in the two-dimensional ellipse 

t( tL13-tLI~)(/LA-1L)-~(/L ~ - ' L ~ )  -< c,~, (22) 

if and only if 13 lies in the p-dimensional ellipsoid 
defined by (21). This result shows that joint two- 
dimensional confidence ellipses are shadows 
(projections) of the p-dimensional ellipsoid for 13 
and therefore are generally wider than the correct 
( 1 - a ) %  two-dimensional regions. To shed some 
light on how much wider they can be, displays of the 
slice through the center of the true ellipsoid by the 
plane spanned by the vectors C, and 6 are very useful 
(see Fig. 8). 

5. Data dispersion and quasi-likelihood 

5.1. Over- or underdispersion with respect to the Poisson 
~istribution 

A common problem with counting data is that, 
even with a very good explanatory structural model 
for the mean, the fits obtained are poor. This is 
reflected in large (small) residual deviances and 
adjusted residuals which have a variance greater 
(smaller) than 1. This indicates that, conditional upon 
the explanatory peaks and background included in 
the final model, the variance of the observations are 
not of the same order as their means, as they should 
be in the Poisson case. Such data are frequently 
described as being over- or underdispersed. 

In fact, while the basic physical phenomenon in- 
volved in diffraction experiments (photon or neutron 
emission) is Poissonian in nature, the recorded counts 
may exhibit a different statistical behavior due to a 
combined effect of the counting chain response and 
of data corrections. In other words, response data as 
presented for analysis may have been aggregated or 
scaled, or the usual assumption of independence may 
be incorrect, i.e. the data are correlated, or simply 
important explanatory 'variables' are incorrectly 
excluded from the regression relationship (systematic 
effects). 

The method to be developed in the following 
sections is particularly concerned with these problems 
since over/underdispersion data do not satisfy the 
basic assumptions of our maximum-likelihood 
approach and also since the lack of an explicit disper- 
sion parameter in standard least-squares algorithms 
can be shown to be, at least partially, responsible for 
some odd results. 

The regression methods described in the previous 
sections were particular applications of the theory of 
maximum-likelihood methods in curved exponential 
families. Consideration of such distributions instead 
of the Poisson ones for the observed counts allows a 
generalization of MLE algorithm, and then an extra 
'dispersion parameter' appears in a natural way. 
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5.2. Estimating overdispersion with quasi-likelihood 

A quasi-likelihood method has been proposed by 
Wedderburn (1974) for the estimation of parameters 
in generalized linear regression models (GLIM) when 
there is some assumed relationship between the mean 
and variance of each observation but not necessarily 
a fully specified likelihood. 

Let us remark first that an interesting property of 
the algorithm we used in fitting diffraction data is 
that the distributional assumption of the errors enters 
only through the variance function of that distribu- 
tion. Thus given the assumption of Poisson counts, 
the fitting algorithm uses only the fact that V(p.) --/x. 
Wedderburn's method originally proposed for linear 
models (discussed by McCullagh & Nelder, 1983, Ch. 
8) can therefore be extended to the non-linear case. 
We will require only that the variance function of our 
observations is known up to a multiplicative constant, 
so that V(/x)--q~p. where q~ is the dispersion par- 
ameter. As with ordinary quasi-likelihood, ~p is 
implicitly assumed to be functionally independent of 
/x. When ~# > 1 we clearly have overdispersion with 
respect to the Poisson distribution (underdispersion 
when ~o < 1). The log quasi-likelihood is of the form 
~[1~(13), q~], with q~ > 0, where 

~[IX(l~), ~o] = ~ {-½ In (2rr~oy,) 
i = 1  

-~o-l[y, In (y~/la. ,)-(y,-la. ,)]}.  (23) 

The quasi-likelihood estimates of the components of 
are obtained by maximizing ~7(i.t , ~o), so the compu- 

tation of ~ may be done exactly as in the previous 
sections. The estimator [~ is still consistent and 
asymptotically normal with covariance matrix ~oV 
where V denotes the ordinary covariance matrix of 
the maximum-likelihood estimator of I~ in the stan- 
dard Poisson regression model. In other words, 
asymptotically ~o acts as a simple scaling factor. 

When ~ is unknown, which is generally the case 
in practice, ~p is estimated by D(I~., y ) / ( n - p )  where 
D(lX, y) is the deviance, and this estimate of q~ is used 
in the computation of standard errors of the com- 
ponents of 1~. 

None of the statistical ideas presented and formal- 
ized here are new; they have been used many times 
in diffraction data analyses (see e.g. Sakata & Cooper, 
1979; Young, Prince & Sparks, 1982). The basic objec- 
tion for such an estimation of the overdispersion 
parameter ~# is that it presupposes that all major 
systematic effects have been accounted for by the 
model and it is therefore much safer first to identify 
and isolate the major systematic effects and only then 
to assign the remainder to residual or unexplained 
variation. 

In practice, when analyzing real data, the X 2 statis- 
tic or the deviance are much larger or smaller than 

that predicted by Poisson sampling, indicating rejec- 
tion of both structural model and Poisson distribu- 
tion. This leaves us with little information still about 
what distribution actually generated the data. In the 
following section we propose an alternative way of 
estimating the parameter q~. Our estimator does not 
rely on the assumption that all the systematic effects 
have been accounted for by the model and is therefore 
more robust. 

5.3. Non-parametric estimation o f  the dispersion 
parameter ~o 

In this subsection, a nonparametric estimator of 
the parameter ~ is proposed. It is based on local 
linear fitting and on the fact that, despite the presence 
of the parameter q~, the observations are Poisson-like 
distributed. More precisely, we shall assume hereafter 
that the square-root transform (see § 4.3) is asymptoti- 
cally a variance-stabilizing transformation for the 
observed variables Yi, i.e. for moderate to large counts 
y:/2 (which differs little from the transformation 
prescribed in § 4.3)* is asymptotically distributed as 

. 1 /2  0 . 2  a normal variable with mean t*~ and variance = 
~o/4. It then follows that the transformed data 
yl/2 , . . . ,  yl/2 become a regression model 

X i  = Y i ' / 2 = 4 ' ( t i ) - 1 - 8 i  ( i = l , . . . , n ) ,  (24) 

where the residuals ei are independent random vari- 
ables with expectation zero and variance q~/4. In 
order to estimate the residual variance independently 
of any parametric model for the function 4', the 
estimator will only depend on some weak assump- 
tions on the smoothness of 4'. 

Our proposal for obtaining residual variance non- 
parametrically is based on pseudo-residuals g;. 
Pseudo-residuals ~i are obtained by taking continuous 
triples of design points t~-l, ti, t~+l, joining the two 
outer observations by a straight line and then comput- 
ing the difference between this straight line and the 
middle observation X~" 

~i - -  t i+l - t~ i  x i - l q - t i - t i - 1  X i + l - X i  
li+ ! - ti_ 1 ti+] - ti_ ! 

=a~Xi_ ,+b~X~+I-Xi  ( i = 2 , . . . ,  n - l ) .  (25) 

From tile properties of these pseudo-residuals we 
are lead to the following definition of an estimate of 
the residual variance 82: 

n - 1  
~2 (n 2)- '  E 2-2 = - c, ei ,  (26) 

i = 2  

2 where ci = ( a ~ + b 2 + l )  -1 for i = 2 , . . . ,  n - 1 .  Indeed, 
for a function 4' assumed to be twice differentiable, 
it is not difficult to see that IF(~2) = 

*When (Yi+3/8)  U2 is used instead of y~/2 the asymptotic 
behavior is reached more rapidly. 
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Table 1. Maximum-likelihood estimation of  the parameters of  a simulated pattern with low Poisson counts 

The first row gives the values of  the true parameters and the following ones display the parameter values estimated by several minimization 
procedures (Fig. 3). The true values were used as starting values; for each peak Int is the integrated intensity, Pos is the position and 
FWHM is the full width at half maximum. The second row reports the estimated parameters by the maximum-likelihood method while 
the third row provides the estimated values by standard non-weighted least-squares refinement since the modified minimum X 2 method 
diverges due to zero counts (standard errors are given in parentheses). The R factors are 0.77 and 0.78 for the MLE and the least-squares 
refinement respectively; the goodness of fit is 100% for both. 

A simulated weak pattern 
Peak 1 Peak 2 Peak 3 

Parameters Background Int Pos FWHM Int Pos FWHM Int Pos F W H M  

Simulated 0.1 0.50 10.5 0.333 0.2 11.0 0.333 0.3 12.3 0.333 
Maximum likelihood 0.15 (9) 0.32 (14) 10.49 (6) 0.32 (14) 0.20 (14) 11.02 (12) 0.40 (29) 0.30 (16) 12-26 (9) 0-52 (25) 
Least squares 0.16(8) 0.14(7) 10.46(3) 0.14(7) 0.27(15) 10.99(12) 0.54(30) 0-38(25) 12-30(21) 0.92(68) 

(a2+ bE+ 1)erE+ O(n-2), and this justifies our choice 
for 82 as an asymptotically unbiased estimator of 0 "2. 

The precise assumptions needed for obtaining the 
asymptotic results are: 

(a) there are no multiple measurements at any 
design point; 

(b) max[ t i - t , _ l [=O(1 /n ) ;  
(c) the function 0 is differentiable. 
It is easy to see that the above conditions are 

^2 sufficient for asymptotic unbiasedness of cr . If the 
bias term is disregarded and if moreover the function 

is Lipsitch of order greater than ¼, then 82 is also 
asymptotically normal (see Antoniadis & Berruyer, 
1990). The bias problem and the smoothness condi- 
tion on qJ is further discussed in § 6.2. 

For models that are overdispersed or mis-specified, 
such an estimator might be useful for model selection 
and model checking. We have undertaken some simu- 
lations to study primarily the bias and secondly the 
validity of residual variance estimator as a tool for 
detecting and estimating over- or underdispersion 
counting data. The results provide useful information 
and are reported in the data-analysis section. 

6. Statistical analysis of some simulated examples 

Although the strength of any data-analysis method 
will be judged from its use on 'real' data, these 
experiences do not easily tell us how correct the data 
reduction is. We have therefore produced artificial 
data with known intensities and counting errors and 
used these to illustrate the statistical methodology 
described in the previous sections and to assess the 
performance of the maximum-likelihood estimators. 
The next subsection discusses the simulation study. 

6.1. The simulation study 

In this section we outline the design of the simula- 
tion experiments used to examine how the input data 
sets and the sample size affect the performance of the 
maximum-likelihood statistics. 

The simulated patterns were constructed as a sum 
of a polynomial background and a given number 

of one-dimensional distribution functions (Gauss, 
Cauchy, Lorentz or pseudo-Voigt). Several values for 
the average background, for the sample size (n) (num- 
ber of data points) and peak parameters were chosen 
in various ranges. At each setting, described in the 
captions of the tables that follow, Poisson counts 
were generated according to the assumed structural 
model for their means. The pseudo-random Poisson 
counts were created from uniform variates using a 
simulation method by Antoniadis, Berruyer & Filhol 
(1985). The obtained data were analyzed by our MLE 
procedure or by the modified minimum X 2 method. 

6.1.1. MLE and minimum X 2 fitting. Our first 
examples are designed to discuss the sensitivity of 
the MLE and modified minimum X 2 estimators to 
weak or strong intensities. 

The results corresponding to a low count pattern 
are summarized in Table 1 and in Fig. 3. The assumed 
background being only 0.1, a number of zero counts 
generated by the Poisson process were artificially reset 
to 0.00001 in order to prevent overflow problems 
while computing. As starting values for the par- 
ameters we used their true values. The method of 
maximum likelihood was applied directly to the data 
with several observed cell values of 0.00001, and 
produced nonzero estimates for such cells. The 
modified minimum X 2 method suffers from the draw- 
back that either it is not defined or it diverges when 
several data points are equal to zero and are replaced 
by some 'small '  positive value as in our example. For 
comparison purposes we thus used a standard non- 
weighted least-squares procedure for fitting. Note in 
Table 1 and Fig. 3 the good agreement between the 
theoretical parameters used in the simulation and 
those obtained by the MLE procedure. However, the 
goodness-of-fit statistic [see (16)] based on the devi- 
ance is quite sensitive to the fact that the counts are 
low and its asymptotic X 2 approximation is probably 
not accurate. Nevertheless, since the parameter 
e.s.d.'s are not based on this statistic but only on the 
structural model and the Poisson assumption they are 
quite reliable. 
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Since the modified minimum . ¥ 2  method (MMCS) 
cannot fit data with observed cell values of zero, we 
now examine an example with non-zero but low cell 
counts• For the results displayed in Fig. 4 we simu- 
lated a pattern made with a very low intensity peak 
embedded in a weak (non-zero) background noise. 
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Fig. 3. A weak simulated diffraction pattern with three Gaussian 
peaks of equal F W H M  (see Table 1). The thick black curve is 
the input pattern, the long-dashed one is the result of  the MLE 
fit and the short-dashed one represents the fit by non-weighted 
least-squares refinement. The oscillating graph shows the nor- 
malized residuals RL (N.r.) within their 95% confidence band. 
We are faced here with data having very bad statistics and, for 
example for the third peak, the hazard of this simulation grouped 
strong counts on the left side of  the peak. The discrepancy 
between the fitted and the theoretical curves may seem large at 
first sight but is within the statistical uncertainty for the 
maximum-likelihood method. This is not true for least-squares 
refinement. 
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Fig. 4. Bias difference for the estimated background parameter 
between the modified minimum X 2 method and maximum-likeli- 
hood method. The two methods were applied to the same data 
set representing a weak pattern with a low-intensity peak. The 
horizontal axis represents the number of  sampled data points. 

The peak was practically unobservable when the 
counts were recorded with a small step width (400 
points) and became discernible when the cells were 
grouped by groups of 16 points. One can see that the 
larger the number of sampled points the greater the 
MMCS estimating bias for the background. The two 
methods give similar results for the peak intensity in 
this example. 

Table 2 and Fig. 5 present another simulation with 
higher counts. A horizontal background and four 
peaks of different shapes were used. Only pseudo- 
Voigt-function peak shapes were used for the fit in 
order to check the stability of the algorithm in an 
asymptotic situation. Recall that the mixing par- 
ameter of a Gaussian peak when represented as 
pseudo-Voigt is 0.0, and for a Cauchy is 1.0. Thus, 
the algorithm performs very well. Note also the 
inadequacy of the Rwp factor as an agreement index 
when the counts are high and the accuracy of the X 2 
approximation for the deviance statistic in this case. 

6.1.2. Model-selection criteria. The next set of simu- 
lations was generated in order to analyze the model- 
selection criteria introduced in § 4. The data set was 
analyzed twice to allow us to examine the effect of 
increasing the number of parameters during the fit 
and to check the accuracy of the selection criteria 
[AIC and F-test (see § 4.1)]. The results are reported 
in Table 3, and the corresponding graphs are shown 
in Figs. 6 and 7. As one can see, the AIC criterion 
(as well as Schwarz criterion) balances quite well the 
underfitting and overfitting risks by optimally adjust- 
ing the bias in the log-likelihood ratio when the 
maximum-likelihood estimates are used. It behaves 
consistently with the true model for large sample 
sizes. The sensitivity of the model-selection criteria 
as well as that of the F-test still holds for low counts. 
The fit in Fig. 7 was performed on a data set simulated 
under similar conditions to that displayed in Table 
3, but with entries divided by a factor of ten. 

Certainly, from a mathematical point of view, con- 
sistency is an attractive asymptotic property to expect 
from a model selection procedure, but any such con- 
sideration presupposes that there exists a 'true' order 
of a model. In the case of real data, the concept of 
true order is not known and one has to be cautious 
with model selection procedures. 

6.1.3. Confidence regions. We present now an 
example of confidence-region estimation with a real 
data set. We found that the standard methods (see § 
4.4) for approaching this problem were inadequate. 
Fig. 8 displays the confidence regions at 95% 
confidence level for the background parameter and 
the intensity of the peak obtained by fitting the data 
displayed in Fig. 9 when all other parameter estimates 
are held fixed at their maximum-likelihood values. 
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Table 2. Maximum-likelihood estimation of the parameters of a simulated pattern with high Poisson counts 

The pattern is shown in Fig. 5 and has 201 scan steps over a 0 scan range 10-14 °. The values of the true parameters are given in the 
first row. The second row reports the estimated parameters while the third one provides their standard errors. R factor = 0.047, goodness 
of  fit = 24.72%. For this estimation we used a pseudo-Voigt function for each peak. Their estimated mixing parameters (with their 
respective e.s.d.'s are: 0.04 (0.06), 0.46 (0.06), 0.99 (0.07) and 0.55 (0.06), while their expected values are 0, 0.5 (approximately), 1 
and 0.5. Thus, the observed difference between the fitted and expected values is not statistically significant. 

A simulated 'strong' pattern 
Peak 1 Peak 2 Peak 3 Peak 4 

Parameters Background Int Pos FWHM Int Pos FWHM Int Pos FWHM Int Pos FWHM 

Simulated 100-0 100.0 10.5 0.1 100.0 11.5 0.1 100.0 12.5 0.1 100.0 13.5 0.1 
Estimated 98-45 99.8 10.5 0.097 101.13 11.5 0.106 100.57 12.5 0.100 103.46 13.5 0.100 
E.s.d. 1.41 2.28 0-0007 0.002 2.4 0 - 0 0 1  0.003 2.3 0.001 0.005 2.4 0 - 0 0 1  0.003 
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Fig. 5. A strong simulated diffraction pattern with four peaks of  
equal width ( F W H M = 0 . 1 )  and intensities but different peak 
shapes (Gauss, Lorentz, Cauchy and pseudo-Voigt with mixing 
parameter 0.5). (a) The input and the fitted pattern cannot be 
distinguished on this plot. The fitted model assumes that all 
peaks are pseudo-Voigt in order to check the efficiency of  the 
MLE algorithm in the asymptotic situation (large counts). The 
estimation results are reported in Table 2. Here again the oscil- 
lating graph shows the Rt. normalized residuals within their 95% 
confidence band. (b) The various diagnostic plots described in 
§ 4.3 for the fits in (a). The broken lines indicate the location 
of  the statistical threshold levels. Here the hat-matrix test clearly 
indicates that the four peaks are too narrow (insufficient samp- 
ling) and thus data points near peak tops strongly influence 
the fit quality. However, in that specific case, the other tests say 
that we can nevertheless trust the obtained parameter values and 
their e.s.d.'s. 

One can see clearly that, since the estimated par- 
ameters are highly correlated, the standard statistical 
methods for obtaining confidence squares for a pair 
of fit parameters are significantly bad for predicting 
realistic confidence regions. Indeed, for each point 
marked [] in Fig. 8, the corresponding pattern was 
obtained and the corresponding normalized residuals 
were calculated. The results are displayed sequen- 
tially in Fig. 9. Point 1 is the only one lying within 
the multidimensional confidence ellipsoid. Points 2 
and 3 lie on its projection onto the parameter plane. 
Point 4 is unambiguously outside the confidence ellip- 
soid. As one can see, the only point producing a 
correct fit is the one lying within the true multi- 
dimensional confidence ellipsoid. 

The results presented here show how poor the 
standard confidence rectangles can be in some cases. 
Users will continue to use such regions, however, 
because it is readily available in software packages 
and provides a concise representation of the informa- 
tion needed to assess the precision of the estimated 
parameters individually. The conclusion is that more 
reliable methods for confidence-region estimation 
procedures should be used when the precision of the 
estimates is an important element for future analyses. 

6.2. Estimating dispersion on simulated and real data 

In this subsection we have undertaken a simulation 
to study the validity of (26) of § 5 for estimating the 
~o factor in overdispersed count data. 

Three different models described in the caption of 
Table 4 were used. For each model a Gaussian ran- 
dom noise with mean 0 and standard deviation 1 was 
added to the profile function, since the task of the 
simulation was to check the behavior of the variance 
estimator and not the validity of the square-root trans- 
form for Poisson data. 

With the notation of § 5, let C denote the (n - 2 )  x 
( n - 2 )  diagonal matrix with elements Ci, i = ci . l ,  and 
let A be ( n - 2 )  x n tridiagonal with elements Ai.~-- 
ai+1, Ai ,  i+l = -1 ,  Ai ,  i+ 2 = bi+l and D = t A C 2 A .  It is 
easily seen that the estimator t~ 2 defined by (26) is of 
the form 

52 : 'XDX/[t r (D )], (27) 



Table 3. The parameters of  a simulated pattern with 121 profile steps with high Poisson counts (see Figs. 6 
and 7) for checking the model-selection criteria 

Four Gaussian peaks were used for the model. 

Model selection for a 'high-count '  pattern 
Peak 1 Peak 2 Peak 3 Peak 4 

Background Int Pos FWHM Int Pos FWHM Int Pos FWHM Int Pos FWHM 
Parameters 100 500 10.4 0.30 500 11.0 0.40 200 12.0 0-20 50 11.82 0.15 

where X denotes the vector of data points and tr 
denotes the trace of a matrix. The divisor, tr(D) in 
(27), is a necessary consequence of the condition that 
when the mean/x(t)  of the X,'s is a straight line then 
c~ 2 must be an unbiased estimator of 002. Expression 
(27) makes relatively easy the calculation of the 

^2  moments of the estimator 00, which can be calculated 
for a general/z. We have 

8 2 = '(Ix + e)D(Ix + e)/ tr(D) 

= ('IXDIx + 2 t IxDE + ' eDe) / t r (D)  

and hence, by equation (15.47) of Kendall & Stuart 
(1977 p. 382), 

~ ( t ~  2)  : 0 °2 + 'IxDIX/tr(D) ( 2 8 )  

and, since e and teDe are uncorrelated, 

Var (t~ 2) = [400 2 'IxD2Ix + 2o'4tr(D2)]/[tr(D) ] 2. (29) 

In our subsequent discussion we will concentrate 
on the bias of our estimator given by (28). Whenever 
the function IX is smooth, i.e. differentiable with ." + 
bounded derivatives, the estimator should have a bias ~ 0 

- 

of the order n -1 where n denotes the sample size. 
For a fiat background with equidistant profile steps, 
this is the case and the estimator behaves well. For 
an equidistant design and normally distributed 
residuals it is not difficult to see that expression (29) 
leads to a variance for 8 2 equal to 35n-1004/9 and 
indeed that is what happens as one can note from 
the results in the first column of Table 4. Unfortu- 
nately, the bias becomes important for narrow peaks 
(small number of points per peak). We decided there- 
fore to correct this bias by estimating the function Ix 
itself by nonparametric methods (not any assumption 
on the functional form of Ix except its 'smoothness'). 
The estimator of Ix, say I$, so obtained was used to 
correct 8 2 by its estimated bias 'liDl~/tr(D). 

So far, we have always assumed that the profile 
function Ix could be expressed by an analytic formula, 
which holds true across the entire observed range of 

t... + 
0 

= 1690 
o 

1160 

630 

10.0 10.8 11.6 12.4 

T h e t a  (o) 

-vv--v~v,'vvv-'V'V~" WW~V v '  ~ _ ~ f Z .  

706 MAXIMUM-LIKELIHOOD METHODS 

100 

Fig. 6. A strong simulated diffraction pattern (n = 100) with four 
Gaussian peaks. When three peaks (p2 = 10) were fitted (this 
figure), the corresponding selection statistics were: A I C =  
275.16, Schwarz = 301.21; with four peaks correctly fitted (Pl = 
13), one obtains A I C =  111, Schwarz = 144.86 and the F statis- 
tic = 58.07, with p~ -P2  = 3 and n -p~ = 87 degrees of freedom, 
s h o w s  a significant improvement  in the fit at a 95% confidence 
level. 
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Fig. 7. A weak simulated diffraction pattern with four Gaussian 
peaks. It looks similar to that displayed in Fig. 6 but  was 
produced with the intensities of Table 3 divided by a factor of 
ten. When three peaks were fitted (peaks 1, 2, 3) the correspond- 
ing sclection statistics were: A I C =  146.83, Schwarz= 174"74; 
with four peaks f t ted  (peaks 1, 2, 3, 5; 5 is mis-specified) one 
obtains A I C =  156.77, Schwarz= 193.12 and the F statistic= 
0.284, with p~ -P2  = 3 and n - P l  = 87 degrees of freedom, shows 
a non-significant improvement  in the fit at a 95% confidence 
level. When the four peaks (peaks 1, 2; 3, 4) are modeled cor- 
rectly, the criteria drop to AIC = 133.16, Schwarz= 170.03 and 
the F statistic = 6.73, with p~-P2 = 3 and n - p ~  = 87 degrees of 
freedom, now shows a significant improvement with respect to 

--1 the three-peak fit at a 95% confidence level [6.73 > 3-23 = F3,s7 
(0.95)]. 
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the explanatory variable t. Nonparametric estimation 
of St by local smoothing avoids this assumption. In ~ 1410 
our case, a smooth curve has been fitted to the data 
using 'supersmoother ' ,  a local smoothing algorithm 
developed by Friedman & Stuetzle (1981) and dis- 970 
cussed in Friedman (1984). 

For the data generated according to the entries of 530 
Table 4, cross validation led to the choice of a smooth- 
ing window size L = 3 resulting in the bias-corrected 

90 estimates of overdispersion reported in the last two 
columns of Table 4. As one can see from the results 
of Table 4, the bias-corrected estimates c~ 2 of 0 .2 are 
satisfactory for the broad peak example even for 
relatively small sample size n and improve as the 
sample size gets larger. For a 'narrow' peak and a ~ 1410 
moderate sample size (n = 100), the corrected over- 
dispersion parameter is still distorted upwards. This 
is a predictable phenomenon since local linear 970 
smoothers tend to 'cut corners' near a bend in the 
regression curve St. 530 

In practice, however, the square-root transform on 
real overdispersed Poisson data makes the transform 
pattern much smoother, thus producing estimates that 9o 
are not likely to be much distorted. The above tech- 
niques were applied to some real neutron powder 
diffraction diagrams with moderate to high resolution 
and it was found that overdispersion factors up to 2 
are not rare in real experiments. 

6.3. Comparison of  minimum X 2 and maximum 
likelihood in Rietveld refinements 

The advantages of ML as compared to minimum 
X 2 (weighted least squares) for profile refinement of 
Poissonian diagrams, such as those recorded in pow- 
der diffraction experiments, is easy to demonstrate 
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Fig. 8. The shaded rectangular region corresponds to the domain 
bounded by the individual confidence intervals at their 95% 
level, the large ellipsoidal region corresponds to the shadow of 
the confidence ellipsoid on the background-intensity plane and 
the small ellipsoid is the intersection of the confidence ellipsoid 
with the plane passing through the maximum-likelihood estimate 
and parallel to the background-intensity plane. 
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Fig. 9. A real dittraction pattern with one peak; the fitted model 
assumes that the peak is pseudo-Voigt. The corresponding 
confidence ellipsoid for the background and the intensity is 
shown in Fig. 8. Each graph in this figure reports the correspond- 
ing model and residuals for points 1, 2, 3 and 4 within the 
confidence ellipsoid graph of Fig. 8. 
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Table 4. Estimation of  the variance of  a simulated 
Gaussian sample with standard deviation or = 1 

The first column gives the number of data points; the next columns 
report the average of the dispersion estimates (and their standard 
errors in parentheses) obtained by equation (26) over 100 simulated 
data sets. For the flat background column, a single constant signal 
of 100 was perturbated by a Gaussian noise; for the broad-peak 
column, a well sampled symmetric smooth peak, centered at the 
middle of the pattern interval [10, 20], of integrated intensity 500 
and of full width at half maximum (FWHM) 4, was added 
to the background. For the last column the peak was chosen 
narrower (maximum intensity 1000, FWHM = 1), in order to have 
less points within the peak range• 

Gaussian noise o-= 1 
Number of Flat Broad Narrow 
data points background peak peak 

100 1.005 (45) 0.982 (37) 2.900 (35) 
250 1.003 (15) 1.001 (15) 0.961 (14) 
500 0.992 (7) 0.992 (7) 0-945 (6) 

1000 0.999 (4) 0.999 (3) 0.980 (4) 

when the fitted d iagram is not too compl icated and 
when the fitted parameters  are the background  and 
peak  parameters  themselves. In the case of  the Riet- 
veld method,  d iagrams with sometimes more  than  a 
thousand  strongly over lapping peaks are processed 
in one row. The refinement no longer bears on the 
background  and  peak  parameters  but on a much 
extended set: a compl icated combinat ion of  the latter 
parameters  th rough a structural  model  of  the sample 
compound  and  simple functions model ing the instru- 
ment  response.  

Rodr iguez-Carvaja l  & Menarde  (1989) have under-  
taken an impressive simulat ion work f rom known 
crystal lographic structures and we are pleased to be 
al lowed to give here a summary  of  their results prior 
to publicat ion.  The method  used is the following: 

(a )  F rom given structural  parameters  (unit-cell 
dimensions,  na ture  and posit ion of  atoms, thermal  
parameters)  and given inst rumental  parameters  (peak 
shape,  resolution curve, background- to-peak  scaling 
factor, count ing time) a theoretical  (i.e. deterministic) 
d iagram Y~(th.) is computed.  

(b) Nr  realizations of  the corresponding simulated 
d iagram are generated,  which closely mimic true 
measured  ones, th rough the use of  a genera tor  of  
pseudo-random numbers according to the Poisson 
law (Antoniadis  et al., 1985): y i ( s im. )=  P [  Yi(th.)]. 

(c) This process is repeated  for Nt increasing 
values of  the counting t ime and thus Nr x Nt simu- 
lated pat terns are produced.  

(d)  Each d iagram is refined through the Rietveld 
method  by using either the classical weighted least- 
squares a lgor i thm or the maximum-l ike l ihood one. 
The refined model  is either the true or a biased one 
(e.g. inadequate  peak shapes) .  

The values of  the refined parameters  are then com- 
pared to the true values (bias and dispersion) and 
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Fig. 10. A set of diffraction patterns of rutile (TiO2) have been 
simulated for increasing counting times. Each simulation was 
repeated ten times. All diagrams were fitted using both the WLS 
(modified minimum g 2) and ML methods. (a) and (b) The 
background value is equal to 1. The scatter plots show the WLS 
estimates (a) and the ML estimates (b). The experimental error 
bars are within the size of the markers. (c) and (d) The X 2 
goodness-of-fit probabilities for the fits obtained by WLS (c) 
and by ML (d). A probability between 20 and 80% indicates a 
reasonable fit. The error bars reflect the scatter of the values 
computed for ten independent simulations. 
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the computed variances are compared to the empirical 
ones. 

The first set of simulations is for the diffraction 
patterns of rutile (TiOz) (Sabine & Howard, 1982) 
with instrumental parameters typical of the high- 
resolution neutron diffractometer D2B of the ILL. 
The results are summarized in Fig. 10, and discussed 
below. 

(a) The refined model is unbiased: both minimiz- 
ation techniques give the correct answer within error 
bars if the counting time is large enough. In the 
opposite case, weighted least squares (WLS) strongly 
underestimates the background value and the X 2 
probability drops to zero while ML always gives the 
correct answer. 

(b) The refined model is biased (given peak shape: 
pseudo-Voigt with mixing parameter m = 0.5; fitted 
peak shape: Gauss or Lorentz): some fitted param- 
eters clearly exhibit a bias (positive or negative 
depending on the use of Gaussian or Lorentzian peak 
shapes), others are barely affected; again both 
minimization techniques give similar results if the 
counting time is large enough and in addition the X 2 
probability is very small. In the opposite case, WLS 
again strongly uiaderestimates the background value 
and, for both algorithms, the probability of the X 2 
test increases when the statistical fluctuations become 
large enough to 'hide' the bias. 

Thus, for the case of this simple structure refined 
by the Rietveld method, we may conclude that: 

The ML and the minimum X 2 methods give similar 
results for parameters most pertinent to the crystal- 
lographer (i.e. atomic parameters); this fully explains 
the extensive use made up to now of the latter 
minimization algorithm. 

Agreement between the average computed (theo- 
retical) and the observed (empirical) variances is 
good. 

When the model is biased, increasing the counting 
time does not change the bias on the fitted parameters. 

The statistical test most sensitive to a bias in the 
model is the X 2 test while the various R factors 
(Hamilton, 1965), familiar to the crystallographer, 
are much less clear. 

A second set of simulations refers to the 
complicated structure of bis(3-acetylamino-l,2,4- 
triazole- O, Na)diaquacopper(I I) sulfate pentahydrate 
(Biagini Cingi, Manotti Lanfredi, Tiripicchio, 
Haasnoot & Reedijk, 1989) [31 non-H atoms; 1700 
reflections in the sin(0Bragg)/A range from 0.0544 to 
0.6226 A-~ (A = 1.6 A)]. The fits were performed with 
the modified minimum X 2 algorithm only. The main 
findings of this latter study were that: high enough 
counting times are crucial even if the model is 
unbiased; and the profile bias in the model has large 
effects on all fit parameters (including atom coor- 
dinates which were fairly insensitive in the TiO2 
case). 

In other words, since with real diagrams the profile 
bias - among others - is rarely absent, the main 
limitation of the Rietveld method is not the use of 
minimum X 2 instead of maximum likelihood but sys- 
tematic errors. For example, the use of normalized 
residuals instead of the mere (Yobs--Ycal) may not 
seem a decisive improvement when the discrepancy 
between all observed and fitted peaks is large because 
of the lack of appropriate analytical functions. 

Thus, the improvement brought by ML to the com- 
plicated case of structural fits through the Rietveld 
method will be, in most cases, hidden behind the 
dominating effects of a collection of, more or less, 
unavoidable systematic errors. However, even though 
the gain may not seem immediate, firstly, ML is 
basically more correct and is no more time consum- 
ing, secondly, it may handle dispersion and/or  detec- 
tor-response corrections in a natural way (Antoniadis 
& Berruyer, 1990). On the contrary, when the interest 
is in profile fitting itself, the gain with ML is obvious, 
especially for low counting rates and because of the 
set of diagnostic tests which may be designed. 

7. Summary and discussion 

The diffraction pattern data-analysis methods 
developed in this paper rely on the maximum-likeli- 
hood method. This is the natural analog of least- 
squares refinement for the Poisson situation, and 
indeed for all generalized forms of data fitting. The 
method provides estimates of the parameters and also 
estimated standard errors. The basic idea is simply 
to choose as estimates the values of the unknown 
parameters which maximize the probability density 
of the observed data. It turns out that the maximum- 
likelihood estimate of the parameters is also the 
minimizer of the Kullback-Leibler distance (see e.g. 
Rao, 1973) from the observed points Yi to the fitted 
values ~7i(~). The main point to retain from this is 
that any error distribution generates its own Kull- 
back-Leibler distance function (deviance) and hence 
its own analogy with least-squares fitting. The 
maximum-likelihood estimates are found by iterative 
search algorithms. 

The common practice of correcting in diffraction 
studies the values of the parameter e.s.d.'s by multi- 
plying them by a goodness-of-fit index in standard 
least-squares minimization procedures has been 
justified and made precise by the use of the quasi- 
likelihood principle for count data. When the model 
that is fitted is incomplete or incorrect, the goodness- 
of-fit index usually departs significantly from unity 
and the real parameter e.s.d.'s are in doubt in a 
statistical sense. Thence, in the present paper, we 
propose an estimate of the over- or underdispersion 
factor in quasi-likelihood models whose form does 
not rely on any assumptions about the theoretical 
models for the structure of diffraction peaks. 
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However, the simulation study has shown that this 
estimator is generally biased with its bias depending 
on how smooth is the theoretical profile function 
representing the peak shapes. Its interpretation and 
its uses require therefore some experience, especially 
in some delicate cases. A model that could con- 
veniently model dispersion as well as mean response 
in a Poisson regression situation should be preferable 
for more practical uses. A theory of such models 
(double Poisson family models) is actually under 
study. Without pretending to be a fully developed 
theory, preliminary examples show the potential of 
this theory for 'robustifying' diffraction data analyses. 
The results will be reported elsewhere. 

Whether or not quasi-maximum likelihood fits are 
better than least-squares refinement is certainly debat- 
able in asymptotic situations but it is clear that for 
low count patterns they can be more powerful reveal- 
ing the limitations of ordinary fitting least-squares 
procedures.* Moreover, if g(~l) is any continuous 
reparametrization of~l, the maximum-likelihood esti- 
mate of g(ll)  is exactly g(~),  a property which is not 
shared by the modified minimum X 2 estimators. 
Finally, one may prove that the minimum ;(2 estimates 
are not always consistent (see Davis, 1985). The 
difference among the two estimators is most perceived 
in some given asymptotic situations where the count- 
ing time T and the number of data points n become 
larger at a certain rate. This is clearly illustrated in 
Fig. 4, where one can see how biased a modified 
minimum X 2 c a n  be. 

A more serious concern about our analyses involves 
the large values of the goodness-of-fit statistics in 
some data sets with large sample sizes, a problem 
that has been also addressed by Hill & Madsen (1984, 
1986). When the sample size is large almost any 
structural model yields a highly significant X 2 or devi- 
ance value and the experimentalist receives little guid- 
ance as to which structural model actually fits the 
data better. The deviance, introduced in previous 
sections, is an effective device for preliminary data 
analysis, particularly when the experimentalist has 
many structural models under review, since it supple- 
ments the usual tests with a quantitative measure of 
the size of the discrepancy between the statistical 
model and observed data. The aim is to see if the 
discrepancy, although highly significant, is small 
enough in order that the model can be considered as 
providing a satisfactory approximation to the data. 
Another sensitive measure of the progress of a 
refinement is the Durbin-Watson d statistic intro- 
duced first in Rietveld refinements by Hill & Flack 
(1987). The d statistic, defined in our case through 

* Note added in proof: A recent Monte Carlo and theoretical 
study (Antoniadis & Hammersley, 1990) has demonstrated that 
WLS fits weighted by the inverse of the data suffer from a systematic 
bias which does not exist with MLE. 

the generalized residuals of § 4.3, quantifies the serial 
correlation between adjacent residuals and provides 
a convenient means of assessing the reliability of the 
derived values of the parameter e.s.d.'s. 

Our main conclusion is to permit a pr io r i  a model 
as general as possible, then use the data, together 
with the likely background, to suggest possible 
modifications to the hypothesized model. The best 
sort of mechanism of this type seems to be an accurate 
residual analysis which considers the adequacy of the 
modified model for each individual bin. This could 
solve many of the practical problems encountered 
when fitting long-counting-time or large-sample-size 
data. 

In our approach, in view of the narrow profile step 
widths, we used the bin midpoints as 'continuous'  
data /x with the appropriate theoretical densities 
(Gauss, Cauchy, Lorentz etc.) as the basis of the 
likelihood. Such an approach ignores the grouping 
effect in the data-collection method and this midpoint 
approximation for low count data with fewer and 
larger bins could rise to significantly different results. 
Estimation of the parameters in such a situation 
requires numerical evaluation of the integrals of the 
theoretical peaks over the bins. This approach will 
be pursued and compared to the present 'continuous'  
approximation in a future work. 

A final word about the computer program used for 
obtaining the figures and results of the previous sec- 
tion. The program, called A B F f i t ,  is available either 
on DEC-VAX/VMS or on a Apple Macintosh com- 
puter. Convenience features include an integrated 
random simulator, the choice of several different 
profile functions and graphical initializations for the 
M LE iterative algorithm. Both programs are used 
successfully in several laboratories. 

The authors are very indebted to G. McIntyre 
(Institut Laue-Langevin, Grenoble) who checked the 
English of the typescript and are also grateful to a 
referee for his very careful reading of the paper and 
his pertinent comments. 
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Abstract 

The form of physical-property tensors of rank 0, 1 and 2 
invariant under the 32 crystallographic point groups and 
their subgroups are tabulated. This constitutes the basis for 
the tensorial classification of domain pairs in ferroic crystals 
which is given via a group theoretical classification of the 
corresponding physical-property tensor pairs. We tabulate 
this classification of tensor pairs for all physical-property 
tensors of rank 0, 1 and 2, and domain point-group sym- 
metry. 

1. Introduction 

A ferroic crystal contains two or more equally stable 
domains of the same structure but of different spatial 
orientation. These domains can coexist in a crystal and may 

* Mailing address: 1701 Bern Road, Apartment B2, Wyomissing, 
PA 19610, USA. 

0108-7673/90/080711-03503.00 

be distinguished by the values of components of certain 
macroscopic tensorial physical properties of the domains 
(Aizu, 1973; Newnham, 1974; Newnham & Cross, 1974; 
Wadhawan, 1982). Aizu (1970; see also Cracknell, 1972) 
has given a tensorial classification of ferroic crystals based 
on a rank 1 physical-property tensor's ability to distinguish 
some or all of the domains. This method of classification 
of ferroic crystals was extended by Litvin (1984) to an 
arbitrary physical-property tensor and used to determine 
the tensorial classification of non-magnetic crystals for all 
physical-property tensors of rank less than or equal to four 
(Litvin, 1985). 

In the study of the mutual relationships between domains, 
the simplest object one can consider is a pair of domains. 
A classification of domain pairs via a tensorial classification 
of corresponding tensor pairs of a full physical-property 
tensor characterizing the domains, where each domain is 
characterized by a unique form of the physical-property 
tensor, was introduced by Janovec (1972). This 
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